3 resultados para non nucleoside reverse transcriptase inhibitor

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenylketonuria, an autosomal recessive Mendelian disorder, is one of the most common inborn errors of metabolism. Although currently treated by diet, many suboptimal outcomes occur for patients. Neuropathological outcomes include cognitive loss, white matter abnormalities, and hypo- or demyelination, resulting from high concentrations and/or fluctuating levels of phenylalanine. High phenylalanine can also result in competitive exclusion of other large neutral amino acids from the brain, including tyrosine and tryptophan (essential precursors of dopamine and serotonin). This competition occurs at the blood brain barrier, where the L-type amino acid transporter, LAT1, selectively facilitates entry of large neutral amino acids. The hypothesis of these studies is that certain non-physiological amino acids (NPAA; DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), α-aminoisobutyrate (AIB), and α-methyl-aminoisobutyrate (MAIB)) would competitively inhibit LAT1 transport of phenylalanine (Phe) at the blood-brain barrier interface. To test this hypothesis, Pah-/- mice (n=5, mixed gender; Pah+/-(n=5) as controls) were fed either 5% NL, 0.5% NB, 5% AIB or 3% MAIB (w/w 18% protein mouse chow) for 3 weeks. Outcome measurements included food intake, body weight, brain LNAAs, and brain monoamines measured via LCMS/MS or HPLC. Brain Phe values at sacrifice were significantly reduced for NL, NB, and MAIB, verifying the hypothesis that these NPAAs could inhibit Phe trafficking into the brain. However, concomitant reductions in tyrosine and methionine occurred at the concentrations employed. Blood Phe levels were not altered indicating no effect of NPAA competitors in the gut. Brain NL and NB levels, measured with HPLC, verified both uptake and transport of NPAAs. Although believed predominantly unmetabolized, NL feeding significantly increased blood urea nitrogen. Pah-/-disturbances of monoamine metabolism were exacerbated by NPAA intervention, primarily with NB (the prototypical LAT inhibitor). To achieve the overarching goal of using NPAAs to stabilize Phe transport levels into the brain, a specific Phe-reducing combination and concentration of NPAAs must be found. Our studies represent the first in vivo use of NL, NB and MAIB in Pah-/- mice, and provide proof-of-principle for further characterization of these LAT inhibitors. Our data is the first to document an effect of MAIB, a specific system A transport inhibitor, on large neutral amino acid transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic oligonucleotides and peptides have found wide applications in industry and academic research labs. There are ~60 peptide drugs on the market and over 500 under development. The global annual sale of peptide drugs in 2010 was estimated to be $13 billion. There are three oligonucleotide-based drugs on market; among them, the FDA newly approved Kynamro was predicted to have a $100 million annual sale. The annual sale of oligonucleotides to academic labs was estimated to be $700 million. Both bio-oligomers are mostly synthesized on automated synthesizers using solid phase synthesis technology, in which nucleoside or amino acid monomers are added sequentially until the desired full-length sequence is reached. The additions cannot be complete, which generates truncated undesired failure sequences. For almost all applications, these impurities must be removed. The most widely used method is HPLC. However, the method is slow, expensive, labor-intensive, not amendable for automation, difficult to scale up, and unsuitable for high throughput purification. It needs large capital investment, and consumes large volumes of harmful solvents. The purification costs are estimated to be more than 50% of total production costs. Other methods for bio-oligomer purification also have drawbacks, and are less favored than HPLC for most applications. To overcome the problems of known biopolymer purification technologies, we have developed two non-chromatographic purification methods. They are (1) catching failure sequences by polymerization, and (2) catching full-length sequences by polymerization. In the first method, a polymerizable group is attached to the failure sequences of the bio-oligomers during automated synthesis; purification is achieved by simply polymerizing the failure sequences into an insoluble gel and extracting full-length sequences. In the second method, a polymerizable group is attached to the full-length sequences, which are then incorporated into a polymer; impurities are removed by washing, and pure product is cleaved from polymer. These methods do not need chromatography, and all drawbacks of HPLC no longer exist. Using them, purification is achieved by simple manipulations such as shaking and extraction. Therefore, they are suitable for large scale purification of oligonucleotide and peptide drugs, and also ideal for high throughput purification, which currently has a high demand for research projects involving total gene synthesis. The dissertation will present the details about the development of the techniques. Chapter 1 will make an introduction to oligodeoxynucleotides (ODNs), their synthesis and purification. Chapter 2 will describe the detailed studies of using the catching failure sequences by polymerization method to purify ODNs. Chapter 3 will describe the further optimization of the catching failure sequences by polymerization ODN purification technology to the level of practical use. Chapter 4 will present using the catching full-length sequence by polymerization method for ODN purification using acid-cleavable linker. Chapter 5 will make an introduction to peptides, their synthesis and purification. Chapter 6 will describe the studies using the catching full-length sequence by polymerization method for peptide purification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oligodeoxynucleotides (ODNs) containing latent electrophilic groups can be highly useful in antisense drug development and many other applications such as chemical biology and medicine, where covalent cross-linking of ODNs with mRNA, protein and ODN is required. However, such ODN analogues cannot be synthesized using traditional technologies due to the strongly nucleophilic conditions used in traditional deprotection/cleavage process. To solve this long lasting and highly challenging problem in nucleic acid chemistry, I used the 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) function to protect the exo-amino groups on the nucleobases dA, dC and dG, and to design the linker between the nascent ODN and solid support. These protecting groups and linker are completely stable under all ODN synthesis conditions, but can be readily cleaved under non-nucleophilic and nearly neutral conditions. As a result, the new ODN synthesis technology is universally useful for the synthesis of electrophilic ODNs. The dissertation is mainly comprised of two portions. In the first portion, the development of the Dmoc-based linker for ODN synthesis will be described. The construction of the dT-Dmoc-linker required a total of seven steps to synthesize. The linker was then anchored to the solid support―controlled pore glass (CPG). In the second portion, the syntheses of Dmoc-protected phosphoramidites ODN synthesis monomers including Dmoc-dC-amidite, Dmoc-dA-amidite, Dmoc-dG-amidite are described. The protection of dC and dA with 1,3-dithian-2-yl-methyl 4-nitrophenyl carbonate proceeded smoothly giving Dmoc-dC and Dmoc-dA in good yields. However, when the same acylation procedure was applied for the synthesis of Dmoc-dG, very low yield was obtained. This problem was later solved using a highly innovative and environmentally benign procedure, which is expected to be widely useful for the acylation of the exo-amino groups on nucleoside bases. The reactions to convert the Dmoc-protected nucleosides to phosphoramidite monomers proceeded smoothly with high yields. Using the Dmoc phosphoramidite monomers dA, dC, dG and the commercially available dT, and the Dmoc linker, four ODN sequences were synthesized. In all cases, excellent coupling yields were obtained. ODN deprotection/cleavage was achieved by using non-nucleophilic oxidative conditions. The new technology is predicted to be universally useful for the synthesis of ODNs containing one or more electrophilic functionalities.